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Abstract
Psychologists and neuroscientists often use complex span tasks or the n-back to measure working memory capacity. At first 
glance, both tasks require many cognitive processes attributed to the construct, including the maintenance of information 
amidst interference. Nevertheless, evidence for their convergent validity is mixed. This poses consequences for the inter-
pretation of working memory performance in cognitive neuroscience, developmental psychology, applied psychology, and 
executive functioning research. We recruited a large and diverse sample using a multisite approach (N = 1,272; community 
and university participants) and had them complete multiple working memory capacity, updating, and fluid intelligence tests. 
We found strong evidence for a dissociation between complex span and n-back tests, and more broadly, between working 
memory capacity and updating factors. Observed correlations between complex span and n-back performance were modest 
(r ̄ = .25), and at the latent level, the two factors only shared 20% of their variance. Each explained unique variance in fluid 
intelligence, and each was more strongly related to fluid intelligence than to each other, with updating measures demonstrating 
stronger relations to fluid intelligence. These results were interpreted via the disengagement hypothesis. What distinguishes 
updating measures from working memory capacity measures is their relative emphasis on disengagement from outdated 
information; disengagement drives their strong relation with fluid intelligence because problem-solving requires generating 
hypotheses but also discarding those discovered to be false. We suggest that researchers who want to measure and draw 
conclusions about working memory capacity or updating should not use complex span tasks and the n-back interchangeably.
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Working memory refers to the cognitive system used to 
maintain information in service of goal-directed behavior 
(Baddeley, 1992; Baddeley & Hitch, 1974). Two types of 
tasks are frequently used to measure individual differences 
in working memory capacity—complex span tasks and the 
n-back—but it is unclear whether they measure the same 
ability, and if not, how they differ.

Complex span tasks challenge subjects to remember a 
sequence of items while completing an interleaved second-
ary task. They were developed following the discovery that 
short-term memory tests, which lack a secondary processing 
task, did not predict reading comprehension (see Daneman 
& Merikle, 1996). Daneman and Carpenter (1980) hypothe-
sized that, rather than passive storage, the ability to maintain 
information while processing other information was crucial 
for comprehension. This ability mapped closely onto Bad-
deley and Hitch’s (1974) concept of working memory, and 
complex span tasks such as reading span were developed to 
measure this construct (Daneman & Carpenter, 1980). In the 
decades that followed, complex span tasks have been fre-
quently used to measure working memory capacity in cog-
nitive psychology (Engle et al., 1999; Kyllonen & Christal, 
1990; Miyake et al., 2001).

In neuroscientific research, by contrast, the n-back has 
been the most prevalent measure of working memory capac-
ity (Owen et al., 2005; Wager & Smith, 2003). The task is 
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particularly well-suited for fMRI studies because it affords 
control over the timing of stimuli. In the n-back, subjects are 
presented a continuous sequence of items and must identify 
whether the current item matches the item that was presented 
n items ago (e.g., three items ago). Accuracy rates decrease 
as n increases (Mackworth, 1959). One challenge is that, in 
addition to having to maintain n items, subjects must also 
rapidly update the contents of working memory to disen-
gage from outdated information (Oberauer, 2009; Shipstead 
et al., 2016; Szmalec et al., 2011), otherwise the memory 
load quickly becomes unfeasible.

Kane et al. (2007) examined performance on the n-back 
and its relation to one complex span test (operation span) 
and one fluid intelligence test (Raven’s matrices) in a sample 
of 129 undergraduates. Two-back performance did not cor-
relate significantly with either measure, whereas three-back 
performance correlated descriptively more strongly with 
Raven’s matrices than with operation span. Indeed, correla-
tions between the n-back and operation span ranged from 
nonsignificant to weak (all rs ≤ .22). Furthermore, operation 
span and the n-back each accounted for unique variance in 
fluid intelligence, suggesting a dissociation between the two 
measures. Kane et al. (2007) noted that the n-back demands 
speeded recognition, whereas complex span tests demand 
serial recall, and that these abilities may reflect different 
aspects of the working memory system.

Another distinction might be the relative contributions 
of maintenance versus disengagement (Burgoyne & Engle, 
2020; Shipstead et al., 2016). In complex span tasks, the 
challenge is for subjects to maintain access to memory items 
while completing secondary distractor tasks. According to 
the executive attention view (e.g., Engle, 2002, 2018), the 
“capacity” that is measured by such tasks reflects the inter-
play between attention and short-term memory, but it is pri-
marily the attentional component that drives the predictive 
validity of working memory capacity measures (e.g., Dane-
man & Carpenter, 1980; Engle et al., 1999). This attentional 
component maps closely onto Baddeley’s concept of the 
central executive (e.g., Baddeley & Hitch, 1974; Baddeley 
& Logie, 1999). Within the context of complex span tasks, 
attention supports the maintenance of information amidst 
distraction and interference, and this is a major source of 
individual differences in performance.

By contrast, in the n-back, subjects must continuously 
update the contents of working memory to disengage from 
outdated information. An inability to disengage makes one 
susceptible to far lures—for instance, calling an item from 
six-back a “target” during a three-back task. For example, 
Shipstead et al. (2016) found that the negative correlation 
between fluid intelligence and n-back false alarms strength-
ened as the lure position increased, indicating that individu-
als with lower fluid intelligence were more likely to mistake 
far lures as targets. Attention is also hypothesized to support 

performance on updating tasks; however, its primary func-
tion is to remove no-longer relevant memory items from 
focus. Unlike complex span tasks, the memory set size used 
in n-back tasks is typically small (e.g., two or three items); 
maintenance is necessary, but the source of individual dif-
ferences in performance is hypothesized to stem from differ-
ences in the ability to disengage from those outdated items 
that make one susceptible to far lures.

Shipstead et al.’s (2016) results fit into a framework we 
refer to as the “disengagement hypothesis.” This framework 
views maintenance and disengagement as two critical factors 
linking executive functioning to fluid intelligence (Burgoyne 
& Engle, 2020; Burgoyne et al., 2019; Hambrick & Alt-
mann, 2015; Shipstead et al., 2016). When subjects attempt 
to solve novel problems in fluid intelligence tests, they must 
generate hypotheses and discard incorrect hypotheses. An 
inability to disengage from outdated hypotheses leads to per-
severation and stymies problem-solving. Both maintenance 
and disengagement are important for problem-solving (e.g., 
Carpenter et al., 1990), but the relative contribution of each 
could be driving the different relationships of complex span 
tests and the n-back with fluid intelligence, as well as their 
less-than-perfect correlation with each other (e.g., Kane 
et al., 2007).

If the disengagement hypothesis is correct, then not 
only should n-back tasks explain unique variance in fluid 
intelligence but so should other measures of updating. Fur-
thermore, updating tasks, including those that do not share 
method-specific variance, should load together on a latent 
factor that is separable from one derived from tasks requiring 
maintenance more than disengagement (i.e., complex span 
and related tasks). For comparison, if the disengagement 
hypothesis is incorrect, then we would not expect updating 
tasks to capture unique variance in fluid intelligence above 
and beyond working memory capacity tasks. Furthermore, 
we would predict that updating and working memory capac-
ity measures would not be distinguishable at the latent level; 
if this were the case, it would provide strong disconfirmatory 
evidence against the disengagement hypothesis.

Importantly, not all studies have shown strong dissocia-
tions between complex span tests and the n-back. Schmiedek 
et al. (2009) administered multiple complex span tests and 
updating tasks (including two n-back tests) that varied in 
stimulus content to a sample of 96 undergraduates and com-
munity participants. Using latent variable modeling, they 
found a correlation of r = .96 between factors representing 
complex span and updating performance—this correlation 
was not significantly different from 1.0. The authors con-
cluded that “updating tasks measure [working memory] 
equally well as [complex span tests]” (p. 1095).

Several aspects of Schmiedek et  al.’s (2009) results 
call their conclusion into question. Notably, two of the 
three complex span measures had weak, nonsignificant 



Psychonomic Bulletin & Review 

correlations with n-back performance, yet at the latent level, 
the constructs were perfectly correlated. At the observed 
level, the only complex span test that correlated significantly 
with n-back performance was rotation span, and both tasks 
used visuospatial memoranda. Commenting on Schmiedek 
et al.’s (2009) analyses, Redick and Lindsey (2013) observed 
that rotation span had a much higher loading on the complex 
span factor (.70) than did the other two complex span tasks 
(.34 and .37). Thus, rotation span was the primary “driver” 
of the complex span factor, which might help explain the 
near-perfect correlation Schmiedek et al. observed between 
complex span and updating factors.

In light of these conflicting results, Redick and Lindsey 
(2013) conducted a meta-analysis to clarify the relation 
between complex span and n-back performance. Across 20 
studies (total N = 2,178), they found that the strength of the 
correlation between complex span and n-back performance 
was stronger for visuospatial memory items than for ver-
bal memory items. Overall, however, they observed only 
a relatively weak meta-analytic correlation, r̄ = .20. They 
concluded that complex span and n-back tasks should not 
be used interchangeably.

The present study

In this multisite study, we provide the largest primary test of 
the disengagement hypothesis and assessment of the relation 
between complex span, n-back, and fluid intelligence to date. 
We use multiple varied indicator measures, latent variable 
analyses, and a much larger sample (N = 1,272) than past 
primary studies. Furthermore, we broaden the scope of the 
analysis to include additional indicators of working memory 
capacity and updating, permitting inferences that go beyond 
task-level observations (i.e., complex span vs. n-back) and 
get closer to the theoretical abilities underpinning perfor-
mance. We test whether (1) complex span and n-back perfor-
mance is highly correlated at the observed and latent level, 
(2) whether n-back performance is more strongly related to 
fluid intelligence than complex span performance, and (3) 
whether each set of measures accounts for unique variance 
in fluid intelligence. We repeat these analyses at the broader 
construct level (i.e., working memory capacity vs. updating) 
to resolve questions regarding the latent structure of cogni-
tive abilities related to executive functioning.

Method

Participants

This study was part of a multisite research endeavor con-
ducted at Case Western Reserve University, Georgia 

Institute of Technology, Michigan State University, Texas 
A&M University—Commerce, and Youngstown State Uni-
versity. We recruited undergraduate participants from each 
university. The universities varied in size, region, and admis-
sion selectivity. Further, we sampled participants from the 
greater Cleveland, Ohio, community. All participants were 
required to be 18–39 years of age. This study was approved 
by each university’s Institutional Review Board. In total, 
1,272 participants were included in the analytical sample.

Procedure

Data were collected as part of a larger project that consisted 
of two sessions lasting up to 2.5 h each. All cognitive tests 
considered in this manuscript were administered during 
Session 1 of the study. All tasks were programmed using 
E-Prime (Version 3.0). Further information regarding the 
scope of data collection can be found at the following link: 
(https:// osf. io/ c39y6). Participants received either research 
participation credits or financial compensation for their 
participation.

During data collection, participants were tested in small 
groups with a research assistant assigned to proctor each ses-
sion. The research assistant ensured the participants under-
stood the instructions. Research assistants took extensive 
notes on participant conduct, which were used to make deci-
sions about data exclusions described below.

Working memory capacity

Figure 1 presents a schematic illustration of the four working 
memory capacity tasks (i.e., symmetry span, rotation span, 
reading span, and letter–number sequencing).

Symmetry span (Kane et al., 2004; Unsworth et al., 2005) The 
aim of symmetry span is to measure visuospatial memory 
while performing a secondary visuospatial processing task. 
On each trial, the participant is shown a grid and asked to 
determine whether or not it is symmetrical. Next, they are 
shown a 4 × 4 grid of squares, one of which is red. Their goal 
is to memorize the location of the red square. This symme-
try–square interleaving pattern continues two to five times 
(i.e., the set sizes used in the task). Afterward, the partici-
pant reports the location where the red squares appeared in 
order. We gave participants 12 trials: three of each set size. 
We used the partial scoring method (Conway et al., 2005) 
as the measure of performance; that is, rather than using 
“all-or-nothing” scoring, participants received credit for the 
number of red squares that they recalled in the correct serial 
position.

Rotation span (Kane et al., 2004; Unsworth et al., 2005) The 
aim of rotation span is to measure visuospatial memory 

https://osf.io/c39y6
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while performing a secondary visuospatial (rotation) pro-
cessing task. On each trial, the participant is shown a letter 
they mentally rotate to determine its orientation (mirror-
imaged or normal). Next, they are shown an arrow pointed 
in one of eight directions. This letter–arrow interleaving pat-
tern continues two to five times. Afterward, the participant 
is asked to report the arrows in the order they appeared. 
We gave participants 12 trials: three of each set size. We 
used the partial scoring method (Conway et al., 2005) as 
the measure of performance; participants received credit for 
the number of arrows that they recalled in the correct serial 
position.

Reading span (Daneman & Carpenter, 1980) The aim of 
reading span is to measure verbal memory while perform-
ing a secondary verbal processing task. On each trial, the 
participant is shown a sentence and asked to determine 
whether it makes grammatical sense. Next, they are shown 
a single letter to be remembered. This letter–sentence inter-
leaving pattern continues three to seven times. Afterward, 
the participant is asked to report the letters in the order they 
appeared. We gave participants six trials, and the set sizes of 
those trials were determined randomly due to a coding error. 
Thus, typical scoring approaches were not suitable for this 

administration of the task. We ameliorated this issue by com-
puting average performance for each set size for each partici-
pant, and then using these as indicators of a “reading span” 
latent factor. The model fit the data well, χ2(5) = 11.70, 
p = .039, CFI = .986, TLI = .973, RMSEA = .029. Scores 
on the reading span factor were saved using the regression 
approach provided by the umx package (Bates et al., 2019) 
in R, using full information maximum likelihood estimation 
to handle missing data.

Letter–number sequencing (modified from Wechsler, 
1997) The aim of the letter–number sequencing task is to 
measure the ability to maintain and manipulate information 
in memory. In each trial, participants view a continuous 
sequence of numbers and letters, 1,000 ms per item, in the 
center of the screen. Each trial includes three to seven items. 
At the end of each trial, participants are asked to type the 
numbers recalled in ascending order, followed by the letters 
recalled in alphabetical order. For example, if a participant 
observed the sequence “Q, 7, 2, H,” the correct response 
would be “2, 7, H, Q.” After three practice trials of three 
items, we gave participants 15 trials, three of each length. 
The measure of performance was the total number of cor-
rectly recalled items.

Fig. 1  Schematic of the four working memory capacity tasks
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Updating

Figure 2 presents a schematic illustration of the four updat-
ing tasks (i.e., letter three-back, spatial three-back, keep 
track, and tone monitoring).

Letter three‑back (modified from Kirchner, 1958) The aim 
of the letter three-back is to measure participants’ ability to 
remember new, incoming verbal information and to discard 
outdated verbal information. In the letter n-back, subjects 
are shown a continuous sequence of letters and are asked 
to indicate whether the current letter matches the one that 
was presented three trials ago. For each letter, the subject 
used the “/” key to indicate that it was a target or the “z” 
key to indicate that it was a nontarget. Each letter appeared 
for 500 ms, then was masked for 2,000 ms during which 
the participant was to respond. Auditory feedback followed 
incorrect responses. Between each trial was a 250-ms blank 
display. There were 147 trials presented in a fixed order: 48 
were target trials, 16 were two-back lure trials, 16 were four-
back lure trials, 16 were five-back lure trials, and 51 were 
nonspecific nontarget trials. The measure of performance 
was the proportion of correct responses.

Spatial three‑back (modified from Kirchner, 1958) The aim 
of the spatial three-back is to measure participants’ ability to 
remember new, incoming spatial information and to discard 
outdated spatial information. In the spatial n-back, subjects 
are shown a continuous sequence of red squares that appear 
within a 4 × 4 grid and are asked to indicate whether the loca-
tion of the current red square matches the one that was pre-
sented three trials ago. For each red square, the subject used 
the “/” key to indicate that it was a target or the “z” key to 
indicate that it was a nontarget. Each red square appeared 
for 500 ms, then was masked for 2,000 ms, during which the 
participant was to respond. Auditory feedback followed incor-
rect responses. Between each trial was a 250-ms blank display. 
There were 147 trials presented in a fixed order: 48 were target 
trials, 16 were two-back lure trials, 16 were four-back lure 
trials, 16 were five-back lure trials, and 51 were nonspecific 
nontarget trials. The measure of performance was the propor-
tion of correct responses.

Tone monitoring (Miyake et al., 2000) The aim of the tone 
monitoring task is to measure participants’ ability to keep 
track of incoming auditory information and to discard 
outdated auditory information. Participants hear a series 

Fig. 2  Schematic of the four updating tasks
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of high-pitched tones (880  Hz), medium-pitched tones 
(440 Hz), and low-pitched tones (220 Hz) for 500 ms each, 
with an interstimulus interval of 2,500 ms. Participants are 
tasked with pressing the space bar after hearing the fourth 
low tone, the fourth medium tone, and the fourth high tone 
in each block. Participants completed four blocks of 25 tones 
(eight high, eight medium, eight low, and one additional 
random tone) in a mixed order. If participants incorrectly 
pressed the space bar, the tone count reset for that pitch. 
Following practice trials, participants completed four blocks 
of trials. The measure of performance was the proportion of 
correct responses.

Keep track (adapted from Friedman et al., 2008) The aim 
of the keep track task is to measure participants’ ability 
to monitor incoming words and to discard outdated words 
from memory. In each trial, participants viewed 15 words 
one at a time in a random order on the screen for 1,500 ms 
each that belonged to one of six categories (relatives, met-
als, animals, colors, countries, and distances). Target cat-
egories for each trial were presented at the bottom of the 
screen. Participants are tasked with typing the last exem-
plar of each target category at the end of the trial. For 
example, if the target categories were relatives, colors, and 
distances, the participant would attempt to remember the 
last exemplar of each of those categories and update this 
representation in memory when a new exemplar of each 
category was presented. After familiarization of the cat-
egories and a practice trial, participants completed three 
trials of four target categories and three trials of five target 
categories. Trial length (four vs. five) was randomized. The 
measure of performance was the proportion of words cor-
rectly recalled.

Fluid intelligence

Figure 3 presents a schematic illustration of the three fluid 
intelligence tasks (i.e., Raven’s Advanced Progressive Matri-
ces, letter sets, number series, and Cattell’s test).

Raven’s Advanced Progressive Matrices (Raven & Court, 
1998) The aim of Raven’s Advanced Progressive Matrices is 
to measure inductive reasoning in above-average intelligence 
samples. Participants are shown a 3 × 3 grid of patterns, with 
the pattern in the bottom right corner missing. The partici-
pant’s task is to discern the rule governing the visuospatial 
set and then to select from eight response options the one 
that best completes the set. We gave participants 10 min to 
complete the 18 odd-numbered items, which increase in dif-
ficulty; the measure of performance was the proportion of 
correct responses.

Letter sets (Ekstrom et al., 1976) The aim of letter sets is to 
measure participants’ ability to discern a rule governing sets 
of verbal stimuli. Participants are shown five sets of four let-
ters and are challenged to identify which of the five sets of 
letters does not adhere to the same pattern as the others. We 
gave participants 7 min to complete 15 items; the measure of 
performance was the proportion of correct responses.

Number series (Thurstone, 1938) The aim of number series 
is to measure participants’ ability to discern patterns of 
numerical stimuli. Participants are shown a set of numbers 
that follow a pattern and are challenged to identify which of 
four possible response options best completes the pattern. 
We gave participants 5 min for 15 items; the measure of 
performance was the proportion of correct responses.

Fig. 3  Schematic of the four fluid intelligence tasks
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Cattell’s Culture Fair Intelligence Test: Conditions subtest 
(Cattell, 1949) The aim of Cattell’s Culture Fair Test is to 
measure inductive reasoning with visuo-spatial information. 
Participants are shown a box on the left side of the screen 
that contains a dot in it, as well as shapes and/or lines. The 
dot is in a particular location with respect to the shapes and/
or lines (e.g., a dot inside a circle and a square). On the right 
side of the screen, subjects are shown five boxes that served 
as response options. These boxes also have shapes and/or 
lines in them, but no dot. Participant were asked to select 
the response option that would allow them to place a dot in 
an analogous location to the one that was provided in the 
box on the left. We gave participants 2.5 min for 10 items; 
the measure of performance was the proportion of correct 
responses.

Transparency and openness

This study was part of a larger project that was preregistered 
(https:// osf. io/ c39y6). This study was not preregistered, but 
we followed the same data preparation and cleaning proce-
dures as outlined in the preregistration. Data, R code, and a 
codebook providing explanations of the files are available on 
the Open Science Framework (https:// osf. io/ q4pcw/? view_ 
only= 61e97 6d9d4 a64b2 ebef9 1cfa8 48c74 ce).

Data preparation

Our initial dataset included 1,407 participants. We removed 
participants’ data if they were noncompliant during the 
study (e.g., using their phone while completing a task; 
nsubjects = 123). Next, we searched for outlying scores, 
which were defined as scores that exceeded three standard 
deviations from the sample mean for that measure (i.e., z 
scores >  ± 3). Scores that were three standard deviations bet-
ter than the mean were Winsorized to z = 3 (nobs. = 0). Scores 
that were three standard deviations worse than the mean 
were removed (nobs. = 190). Subjects who were missing three 
or more data points due to outlier exclusion were removed 
(nsubjects = 4). Finally, we computed Mahalanobis’ distance 
to detect multivariate outliers; we removed subjects’ data 
if the associated p value was < .001 (nsubjects = 8). We used 
the z-scored variables for all analyses in the manuscript. As 
a sensitivity check, we also analyzed scores prior to data 
cleaning and found the same pattern of significant results. 
The analyses reported below are based on the analytical sam-
ple of 1,272 participants who were retained throughout the 
data cleaning procedure.

Modeling approach and fit statistics

For all confirmatory factor analyses and structural equation 
models, we used maximum likelihood estimation with robust 

standard errors and full information maximum likelihood 
estimation for missing data. Variables were standardized 
prior to estimation. Confirmatory factor analyses and struc-
tural equation models were estimated using JASP (JASP 
Team, 2024).

We report multiple fit statistics: The χ2 is an absolute fit 
index comparing the fit of the specified model to that of the 
observed covariance matrix. A significant χ2 can indicate 
lack of fit but is heavily influenced by sample size. In large 
samples, such as the one used in the present study, even a 
slight deviation between the data and the model can lead 
to a significant χ2 statistic. Therefore, we also report the 
comparative fit index (CFI) and Tucker–Lewis index (TLI), 
which compare the fit of the model to a null model in which 
the covariation between measures is set to zero, while adding 
penalties for additional parameters. For CFI and TLI, large 
values indicate better fit (i.e., > .90 or ideally, > .95). For the 
root mean square error of approximation (RMSEA) fit sta-
tistic, values less than .05 are considered great, while values 
less than .08 are considered adequate. For the standardized 
root mean square residual (SRMR), which computes the 
standardized difference between the observed and predicted 
correlations, a value of less than .08 indicates adequate fit, 
with lower values indicating better fit (Hu & Bentler, 1999).

Results

Descriptive statistics are presented in Table 1. Correlations 
are presented in Table 2. The three complex span tasks had 
intercorrelations ranging from r = .33 to r = .57 (r ̄ = .43), 
whereas the two n-back tasks correlated r = .71 with each 
another.

Observed correlations between complex span and n-back 
performance ranged from r = .17 to r = .32 (r ̄ = .25). Of the 
three complex span tasks, reading span had the weakest cor-
relation with the two n-back tasks (rs of .17 and .18). Read-
ing span uses verbal memory items; as such, these results 
align with Redick and Lindsey’s (2013) meta-analytic find-
ing of relatively weak associations between n-back tasks and 
complex span that used verbal memoranda. Reading span 
also had lower reliability than the other two complex span 
tests, which could have attenuated its correlations. Given 
that construct- and method-specific variance influence these 
relationships, as well as psychometric issues such as unreli-
ability, our next analyses used latent variable techniques to 
shed more light on our research questions.

We first conducted an exploratory factor analysis on the 
complex span and n-back measures, using principal axis fac-
toring and an oblique (promax) rotation. We extracted two 
factors with eigenvalues greater than 1 (Fig. 4). The two 
n-back tasks loaded highly on the first factor (loadings of 
.84 and .84) and the three complex span tasks loaded highly 

https://osf.io/c39y6
https://osf.io/q4pcw/?view_only=61e976d9d4a64b2ebef91cfa848c74ce
https://osf.io/q4pcw/?view_only=61e976d9d4a64b2ebef91cfa848c74ce
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on the second factor (loadings of .82, .69, and .47 [reading 
span]). Cross-loadings were negligible (range: − .02 to .03). 
The factors correlated r = .44.

We repeated this analysis after including the additional 
measures of working memory capacity (letter–number 
sequencing) and updating (tone monitoring and keep 
track). Two factors had eigenvalues > 1. Tone monitoring 
primarily loaded on the first n-back/updating factor (load-
ings of .49 vs .27). Letter–number sequencing primarily 
loaded on the second complex span/working memory 
capacity factor (loadings of .21 vs .41). Keep track had 
similar loadings on both factors (loadings of .22 vs .18). 
In the following analyses, keep track served as an indicator 
of updating because it requires rapid disengagement, but 
we note that the conclusions of the manuscript are robust 
to its exclusion.

We investigated the relation between complex span and 
n-back performance at the latent level by comparing the 
fit of two confirmatory factor analysis models. In the first, 
the complex span measures loaded on one factor and the 
n-back measures loaded on another factor. As shown in 
Fig. 5, the correlation between the two factors was r = .45 
[.39, .51], indicating that they shared 20.25% of their vari-
ance. In the second model, we tested whether this corre-
lation could be constrained to 1 without loss in model fit. 
Constraining the correlation significantly worsened model 
fit, ∆χ2(1) = 514.61, p < .001, indicating that complex span 
and n-back measures differ at the latent level.

We repeated this analysis after including the broader 
working memory capacity (letter–number sequencing) 
and updating measures (tone monitoring and keep track). 
We found that the two factors correlated r = .57 [.51, .62] 

Table 1  Descriptive statistics

All variables were standardized prior to data cleaning and analysis (see Data Preparation section); variables were rescaled to their original units 
to report descriptive statistics. α = Cronbach’s alpha; ω = coefficient omega; Listwise n = 1,127

Measure N Mean SD Skew Kurtosis Reliability

Symmetry span 1,232 28.67 8.01  − 0.61  − 0.18 α = .74
Rotation span 1,233 17.70 5.44  − 0.35  − 0.32 α = .76
Reading span 1,250 0.05 0.70  − 0.52  − 0.27 ω = .60
Letter–number sequencing 1,207 55.93 10.44  − 0.61 0.19 α = .80
Letter n-back 1,221 0.61 0.16  − 0.46 0.58 α = .95
Spatial n-back 1,215 0.53 0.16  − 0.54 0.44 α = .95
Tone monitoring 1,223 0.82 0.10  − 0.71  − 0.08 α = .92
Keep track 1,248 0.45 0.11  − 0.61 0.27 α = .59
Raven’s matrices 1,221 0.55 0.19  − 0.40  − 0.09 α = .76
Letter sets 1,225 0.69 0.18  − 0.76 0.20 α = .72
Number series 1,234 0.63 0.20  − 0.29  − 0.44 α = .74
Cattell’s test 1,254 0.52 0.17  − 0.03  − 0.29 α = .50

Table 2  Correlation matrix

Pairwise n ranges from 1,181 to 1,248. All correlations are significant at p < .001

Measure 1 2 3 4 5 6 7 8 9 10 11

1. Symmetry span –
2. Rotation span .57 –
3. Reading span .39 .33 –
4. Letter–number sequencing .34 .34 .35 –
5. Letter n-back .32 .30 .17 .34 –
6. Spatial n-back .27 .27 .18 .33 .71 –
7. Tone monitoring .38 .39 .26 .41 .55 .47 –
8. Keep track .20 .18 .18 .26 .25 .25 .28 –
9. Raven’s matrices .40 .37 .25 .39 .48 .45 .54 .29 –
10. Letter sets .31 .31 .23 .45 .46 .40 .51 .28 .54 –
11. Number series .39 .36 .29 .44 .42 .36 .47 .27 .47 .47 –
12. Cattell’s test .20 .21 .13 .25 .32 .34 .37 .16 .38 .33 .29
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(R2 = 32.5%) and could not be set equal to each another with-
out loss in fit, ∆χ2(1) = 412.52, p < .001.

Next, we tested whether the complex span or the n-back 
factor was more strongly related to fluid intelligence. The 
correlation between complex span and fluid intelligence was 
r = .66 [.61, .72], whereas the correlation between n-back 
and fluid intelligence was r = .74 [.70, .78] (Fig. 6). Con-
straining these correlations to be equal significantly wors-
ened model fit, ∆χ2(1) = 5.22, p = .022, indicating that fluid 
intelligence was significantly more strongly related to the 
n-back factor than the complex span factor. Furthermore, 
both the n-back and complex span factors were significantly 
more strongly related to fluid intelligence than to each other, 
∆χ2(1) = 92.52, p < .001, and ∆χ2(1) = 51.60, p < .001, 
respectively.

We repeated this analysis for the broader working mem-
ory capacity and updating factors and found the same pat-
tern of results. Fluid intelligence correlated significantly 
more strongly with updating (r = .84 [.81, .87]) than with 
working memory capacity, r = .76 [.71, .81], ∆χ2(1) = 7.36, 
p = .007.

Finally, we tested whether the complex span and n-back 
factors accounted for unique variance in fluid intelligence 
above and beyond one another. Using structural equation 
modeling, we specified the complex span and n-back fac-
tors as correlated predictors of fluid intelligence (Fig. 7). 
Both regression paths were statistically significant (complex 
span β = .42; n-back β = .55), indicating that both factors 
explained unique variance. The n-back factor explained sig-
nificantly more unique variance in fluid intelligence than the 

Fig. 4  Scree plots from exploratory factor analyses. Note. Top 
panel: Scree plot from exploratory factor analysis with complex 
span and n-back measures. The model fit the data well, χ2(1) = 2.54, 
p = .111; CFI = .999, TLI = .991, RMSEA = .035, 90% CI [.000, .091], 
SRMR = .005. Bottom panel: Scree plot from exploratory factor 

analysis including additional measures of working memory capacity 
(letter–number sequencing) and updating (tone monitoring and keep 
track). Model fit was adequate, χ2(13) = 89.88, p < .001; CFI = .974, 
TLI = .944, RMSEA = .068, 90% CI [.055, .082], SRMR = .027
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complex span factor did, ∆χ2(1) = 5.22, p = .022. Together, 
the predictors explained 67.9% of the variance.

We repeated this analysis for the broader working 
memory capacity and updating factors and found the same 
pattern of results. Updating explained significantly more 
unique variance in fluid intelligence (β = .60) than work-
ing memory capacity did (β = .40), ∆χ2(1) = 7.36, p = .007. 
Together, the predictors explained 80.2% of the variance in 
fluid intelligence.

Discussion

In this multisite study (N = 1,272), we found strong evidence 
for a dissociation between complex span and n-back tasks, 
and more generally, between working memory capacity and 
updating measures. On this basis, we suggest that research-
ers who want to measure working memory capacity should 
not use complex span and n-back tasks interchangeably.

What are the sources of variance that distinguish these 
measures? Kane et al. (2007) identified recall versus recog-
nition as one candidate. In the n-back, subjects make con-
tinuous recognition judgments, whereas in complex span 
tasks, subjects attempt to recall memory items at the end 
of each trial. Thus, performance on the n-back can be sup-
ported by recognition or a familiarity function rather than 

explicit recall (Oberauer, 2009; Szmalec et al., 2011), and 
these abilities may reflect different aspects of the working 
memory system (Kane et al., 2007). Although recognition 
could support performance in some n-back tasks, our n-back 
tasks had as many lure trials as target trials; relying on mere 
familiarity would not be an effective strategy as it would 
result in a high false alarm rate.

The evidence presented here suggests other distinguish-
ing features. In structural equation models, complex span 
and n-back performance each explained unique variance in 
fluid intelligence above and beyond the other. This same 
pattern was obtained when analyzing broader factors rep-
resenting working memory capacity and updating. The key 
distinguishing features of these measures and constructs may 
be the role of maintenance relative to disengagement.

Attention control supports both maintenance and dis-
engagement (Burgoyne & Engle, 2020; Shipstead et al., 
2016). Working memory capacity measures (e.g., complex 
span tasks) emphasize maintenance; the role of attention 
control is to protect memory items from the consequences of 
interference from the secondary task. This attention control 
process is likely what explains the shared variance between 
working memory capacity and fluid intelligence. When 
problem-solving, one’s ability to generate, test, and keep 
track of hypotheses depends on the ability to maintain this 
information despite interference.

Fig. 5  Confirmatory factor analyses of complex span and n-back and 
of working memory capacity and updating. Note. Top panel: Con-
firmatory factor analysis with one factor for complex span measures 
and another factor for n-back measures. Model fit was excellent: 
χ2(4) = 1.93, p = .748; CFI = 1.00, TLI = 1.00, RMSEA = .000, 90% 
CI [.000, .030], SRMR = .006. Bottom panel: Confirmatory factor 

analysis including additional measures of working memory capac-
ity and updating. Model fit was less than adequate: χ2(19) = 248.09, 
p < .001; CFI = .919, TLI = .880, RMSEA = .097, 90% CI [.087, .108], 
SRMR = .064; there was a large residual variance for keep track (.89), 
but it was retained on conceptual grounds as a measure of updating. 
N = 1,272
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In contrast, updating measures (e.g., n-back) emphasize 
disengagement; the role of attention control is to remove out-
dated items from focus (Shipstead et al., 2016). This atten-
tion control process is likely what explains the covariance 
between updating and fluid intelligence. When problem-
solving, one’s ability to discard hypotheses discovered to 
be false depends on one’s ability to disengage. Our struc-
tural equation models demonstrated that updating correlated 
with fluid intelligence more strongly than working memory 

capacity, suggesting that disengagement may be especially 
crucial for problem-solving.

Nevertheless, there are alternative theoretical accounts 
that are also consistent with our results. For example, the 
“binding hypothesis” (e.g., Wilhelm et al., 2013) views 
the working memory system as reflecting the ability to 
rapidly build, maintain, and update bindings or rela-
tions between memory items. Within this framework, 
maintenance of active bindings and disengagement from 

Fig. 6  Confirmatory factor analyses examining relationships with 
fluid intelligence. Note. Top panel: Confirmatory factor analysis 
examining the relation between fluid intelligence, complex span, 
and n-back performance at the latent level. Model fit was excellent: 
χ2(24) = 62.07, p < .001; CFI = .989, TLI = .984, RMSEA = .035, 

90% CI [.025, .046], SRMR = .022. Bottom panel: Confirmatory 
factor analysis including additional measures of working memory 
capacity and updating. Model fit was adequate: χ2(51) = 450.56, 
p < .001; CFI = .919, TLI = .896, RMSEA = .078, 90% CI [.072, .085], 
SRMR = .053. N = 1,272
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no-longer-relevant bindings can explain the dissociation 
between categories of working memory tasks such as com-
plex span and the n-back. That is, the general principles 
of maintenance and disengagement can be incorporated 
into other working memory frameworks, including the 
binding hypothesis as well as Cowan’s embedded-process 
model (Cowan et al., 2020). The goal of our study was not 

to adjudicate between these different frameworks but to 
examine relationships among cognitive constructs and dis-
cuss the cognitive process of disengagement as a potential 
explanation for the observed relationships.

Our results from 1,272 university and community par-
ticipants revealed that updating was strongly related to fluid 
intelligence (r = .84) and, to a lesser extent, working memory 

Fig. 7  Structural equation models predicting fluid intelligence. 
Note. Top panel: Structural equation model with complex span and 
n-back factors specified as correlated predictors of fluid intelli-
gence. Model fit was excellent: χ2(24) = 62.07, p < .001; CFI = .989, 
TLI = .984, RMSEA = .035, 90% CI [.025, .046], SRMR = .022. Bot-

tom panel: Structural equation model including additional measures 
of working memory capacity and updating. Model fit was adequate: 
χ2(51) = 450.56, p < .001; CFI = .919, TLI = .896, RMSEA = .078, 
90% CI [.072, .085], SRMR = .053. N = 1,272
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capacity (r = .61). These findings stand in contrast to the 
results of Frischkorn et al. (2022), who analyzed a sample of 
111 young adults and concluded that updating-specific vari-
ance was not related to fluid intelligence or working memory 
capacity. How can this discrepancy be reconciled? Several 
issues with the measures and models from the study preclude 
strong conclusions. For example, the updating-specific factor 
in Frischkorn et al.’s study did not effectively capture updat-
ing-specific variance. The measures of updating and “non-
updating” consisted of three versions of a short “keep track” 
task (15 trials requiring updating and five trials that did not). 
Across several models, the loadings for the updating-specific 
indicators were not credibly different from zero, and the best-
fitting models did not include updating-specific variance. 
Further, the “nonupdating” indicators were only weakly cor-
related with each other (rs of .16, .20, and .27), two suggested 
ceiling effects (accuracy of 95% and 91%), and these indica-
tors had imbalanced and generally low loadings (e.g., .6, .3, 
.3) on a common factor. Oddly, the “updating” and “nonupdat-
ing” latent factors were highly correlated with each other (e.g., 
a standardized path of .88 in one model in which it was freely 
estimated). Although Frischkorn et al. claimed null relation-
ships between updating and other constructs of interest, they 
also stated that “strictly speaking, these results preclude any 
further investigation of relationships of updating-specific vari-
ance with the other covariates” (p. 1349). In comparison, our 
large sample with a range of abilities, robust factor loadings, 
and  model fit provide compelling evidence for a strong rela-
tionship between updating and fluid intelligence.

Limitations

The first limitation of this work is that we administered only 
two n-back tests, one with spatial memory items and another 
with verbal memory items. As a result, our n-back latent 
factor may contain more method-specific variance than if 
we had administered three n-back tests. This study was part 
of a larger investigation, and it was not possible to include 
additional n-back tests in the larger investigation’s design. 
To mitigate this issue, we also modeled a broader “updat-
ing” latent factor that incorporated two additional tasks: 
tone monitoring and keep track. The influence of common 
method variance was likely reduced in this factor, and yet 
models using this factor revealed stronger evidence for a 
dissociation than the models that included just complex span 
and n-back tasks. Therefore, we would predict that adding a 
third n-back task might strengthen the results presented here 
but would not be likely to change the overall conclusions. 
A similar argument could be made regarding the operation-
alization of the updating factor; additional measures (for 
an example, see Ecker et al., 2014) could be included to 
broaden the factor.

The second limitation of this work is the relatively 
lower internal consistency reliability for the complex span 
tasks (.74, .76, and .70) than the n-back tasks (.95 and 
.95). Although the reliability estimates for the complex 
span tasks were not low by conventional standards (Par-
sons et al., 2019), unreliability reduces the shared vari-
ance among measures and could have consequences for 
the latent factor attempting to capture this common vari-
ance. Reliability could be increased by adding more trials 
to the complex span tasks. However, we do not think our 
results are merely due to differing reliabilities of the indi-
cator measures. When we added a more-reliable measure 
(letter–number sequencing: .80) to the working memory 
capacity factor and slightly less-reliable measures (keep 
track and tone monitoring: .92 and .59) to the updating 
factor, making the reliabilities of the indicator measures 
more balanced across factors, the dissociation between 
the factors increased.

Conclusion

Taking a step back, the present results raise an important 
question for our conceptualization of what complex span 
tasks measure, as well as the structure of executive func-
tions. Though in Friedman and Miyake’s (2017) model of 
inhibition, complex span and updating tasks are described 
as measuring closely related constructs, we provide strong 
evidence that these two types of measures are not equiva-
lent. The complex span and n-back tests were only mod-
erately related to one another at the latent level (r = .45), 
demonstrating poor convergent validity for two sets of 
tasks that ostensibly measure the same construct.

These tasks may differ not only in their affordance of 
recall versus recognition, but also in their relative demands 
on maintenance versus disengagement. We suggest that 
researchers think carefully about the ability they wish to 
measure before choosing tasks to administer. Accurate 
interpretations of measures are necessary for understand-
ing the latent structure of executive functions and develop-
ing robust theories of cognitive constructs.
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